Siemens RS 485 User Manual

865.1  
7
RWF40...  
Interface RS-485  
The RS-485 interface is used for integrating RWF40… controllers into data networks  
via MOD bus protocol.  
Application examples:  
-
-
-
Process visualization  
Plant control  
Reporting  
Master-slave principle  
Communication between a PC (master) and a device (slave) via MOD bus is based on  
the master-slave principle in the form of data query / instruction – reply.  
A master computer controls the exchange of data and can address up to 99 controllers  
via device addresses (slaves).  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Communication sequence  
Both the start and end of a data block are characterized by transmission pauses. The  
maximum period of time that may elapse between 2 successive characters is 3 times  
the period of time required for the transmission of one character.  
The character transmission time (period of time required for the transmission of 1 char-  
acter) is dependent on the Baud rate and the type of data format.  
Using a data format of 8 data bits, no parity bit and 1 stop bit, the character transmis-  
sion time is calculated as follows:  
Character transmission time [ms] = 1000 * 9 bits / Baud rate  
Process  
Data query by the master  
Transmission time = n characters * 1000 * x bits / Baud rate  
Identification of end of data query  
3 characters * 1000 * x bits / Baud rate  
Handling of data query by the slave (? 250 ms)  
Reply by the slave  
Transmission time = n characters * 1000 * x bits / Baud rate  
Identification of end of reply  
3 characters * 1000 * x bits / Baud rate  
Example  
Identification of the data query or end of the reply with a data format of 10 / 9 bits.  
Waiting time = 3 characters * 1000 * x bits / Baud rate  
Baud rate  
9.600  
19.200  
Data format [bits]  
Waiting time [ms]  
2.813  
9
9
1.406  
3/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Data query sequence  
The time sequence of a data query looks as follows:  
Time sequence  
Master  
Slave  
Data query  
Data query  
Reply  
t0  
t1  
t0  
t2  
7865z12e/1102  
t0  
t1  
t2  
Identification of end = 3 characters  
(time is dependent on the Baud rate)  
This time is dependent on internal handling.  
The maximum handling time is 250 ms  
This is the time required by the device to switch from the transmitting mode back  
to the receiving mode.  
This time must be observed by the master before it makes a new data query. It  
must always be maintained, even if the new data query is sent to some other  
device.  
t2 O 20 ms  
Communication during the slave’s internal handling time  
The master is not allowed to make any data queries during the slave’s internal handling  
time.  
Data queries made during that period of time will be ignored by the slave.  
Communication during the slave’s response time  
The master is not allowed to make any data queries during the slave’s response time.  
Data queries made during that period of time cause all data currently on the bus to  
become obsolete.  
4/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Structure of the data blocks  
All data blocks use the same structure:  
Data structure  
Slave address  
Function code  
Data field  
Checksum CRC16  
1 byte  
1 byte  
x byte  
2 bytes  
Every data block contains 4 fields:  
Slave address  
Function code  
Data field  
Device address of a certain slave  
Function selection (reading or writing words)  
Contains the following information:  
-
-
-
Word address  
Number of words  
Word value  
Checksum  
Identification of transmission errors  
Fault handling  
3 different error codes are used:  
Error codes  
1
2
8
Invalid function  
Invalid parameter address  
Write access to parameter rejected  
Reply in the event  
of fault  
Slave address  
Function  
XX OR 80 h  
1 byte  
Error code  
Checksum CRC16  
1 byte  
1 byte  
2 bytes  
The function code is OR linked with 0 x 80, that is, the MSB (most significant bit) will be  
set to 1.  
Example  
Data query:  
01  
Reply:  
01  
02  
00  
70  
00  
04  
CRC16  
82  
01  
CRC16  
Special cases  
In the following cases, the slave does not reply:  
-
-
-
The checksum (CRC16) is wrong  
The instruction given by the master is incomplete or overdefined  
The number of words or bits to be read is zero  
5/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Checksum (CRC16)  
The checksum (CRC16) is used to detect transmission errors.  
If the evaluation reveals an error, the relevant device will not respond.  
Calculation  
CRC = 0xFFF  
CRC = CRC XOR ByteOfMessage  
For (1 to 8)  
CRC = SHR (CRC)  
if (flag to the right = 1)  
then  
else  
CRC = CRC XOR  
0xA001  
while (not all ByteOfMessage edited)  
The low byte of the checksum will be transmitted first.  
Example  
Data query:  
Reading 2 words from address 6 (CRC16 = 0x24A0)  
0B  
03  
00  
06  
00  
02  
A0  
24  
CRC16  
Reply:  
(CRC16 = 0x6105)  
0B 03  
04  
00  
00  
42  
C8  
61  
05  
Word 1  
Word 2  
CRC16  
The following functions for the device will be available:  
Function number  
0x03 / 0x04  
0x06  
Function  
Reading n words (n ? 12)  
Writing 1 word  
0x10  
Writing n words (n ? 2)  
6/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Reading n words  
This function is used to read n words from a certain address.  
Slave address Function 0x03 Address of the Number of  
Data query  
Checksum  
CRC16  
or 0x04  
first word  
words  
(max. 12)  
2 bytes  
1 byte  
1 byte  
2 bytes  
2 bytes  
Reply  
Slave address Function 0x03  
or 0x04  
Number of  
bytes read  
1 byte  
Word value(s)  
Checksum  
CRC16  
2 bytes  
1 byte  
1 byte  
x byte(s)  
Example  
Reading the 2 setpoints of the controller  
Word address = 0x0008 (setpoint SP1)  
Data query:  
0B  
Reply:  
0B  
03  
00  
08  
00  
04  
CRC16  
03  
08  
0000  
42C8  
0000  
4316  
CRC16  
Setpoint 1 (100)  
Setpoint 2 (150)  
Writing 1 word  
With the “Wordwriting” function, the data blocks for instruction and reply are identical.  
Instruction  
Slave address Function 0x06 Word address  
1 byte 1 byte 2 bytes  
Slave address Function 0x06 Word address  
1 byte 1 byte 2 bytes  
Word value  
2 bytes  
Checksum  
CRC16  
2 bytes  
Reply  
Word value  
2 bytes  
Checksum  
CRC16  
2 bytes  
Example  
Write limit value limit comparator 1 (AL1) (= 275)  
Word address = 0x000C  
Instruction: (write the first part of the value)  
0B  
Reply (like instruction):  
0B 06  
06  
00  
00  
0C  
0C  
80  
80  
43  
43  
00  
00  
89  
89  
CRC16  
CRC16  
CRC16  
CRC16  
Instruction: (write the second part of the value)  
0B  
Reply (like instruction):  
0B 06  
06  
00  
00  
0D  
0D  
7/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Writing n words  
Slave  
address  
Function  
0x10  
Address Number of Number of  
Word  
value(s)  
Check-  
sum  
CRC16  
2 bytes  
Instruction  
of first  
word  
words  
bytes  
(max. 2)  
1 byte  
1 byte  
1 byte  
2 bytes  
2 bytes  
x byte(s)  
Reply  
Slave address Function 0x10  
1 byte 1 byte  
Address of  
first word  
2 bytes  
Number of  
words  
2 bytes  
Checksum  
CRC16  
2 bytes  
Example  
Write switch-on threshold (Hys1 = -10)  
Word address = 0x0018  
Instruction:  
0B  
10  
00  
18  
00  
02  
04  
00  
00  
00  
C1  
20  
CRC16  
CRC16  
Reply:  
0B  
10  
00  
18  
02  
Data type “char“  
Data type “float“  
The high byte must be transmitted first.  
Example: Configuration code C111: “9030“  
MOD bus: 0B10 0024 00 02 04 0903  
The following explanations apply under the condition that the master works with the  
IEEE-754 format. Before transmitting a value, the bytes must be exchanged in a way  
that the order corresponds to the presentation for the MOD bus (see illustration below).  
M-23 bit normalized mantissa  
E-exponent (complement to base 2)  
S-Sign-bit; 1 = negative, 0 = positive  
MOD-Bus  
MMMMMMMM  
EMMMMMMM  
MMMMMMMM  
SEEEEEEE  
Master  
(IEEE 754)  
EMMMMMMM  
SEEEEEEE  
MMMMMMMM MMMMMMMM  
7865z13e/1102  
Example:  
Transmission of decimal value “550“:  
MOD bus:  
0x80, 0x00, 0x44, 0x09  
Following is a description of all process values (variables) with their addresses, data  
type and type of access.  
Where:  
R / O  
R / W  
float  
Read only access  
Read and write access  
Float value (4 bytes / 2 words)  
Integer (2 bytes / 1 word)  
word  
The process values are subdivided into logic areas.  
8/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Address tables  
Process data  
Address  
Data  
Access  
Parameter  
Value range  
Default  
value  
type  
float  
float  
float  
float  
0x0000  
0x0002  
0x0004  
0x0006  
R / O  
R / O  
R / O  
R / W  
Actual value E1  
Actual value E2  
Actual value E3  
Current setpoint  
0x0008  
0x000A  
float  
float  
R / W SP1  
R / W SP2 (=dSP) Second setpoint  
First setpoint  
SPL...SPH  
SPL...SPH  
0
0
Parameter level  
Address  
Data  
Access  
Parameter  
Value range  
Default  
type  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
value  
0
10  
80  
350  
1
15  
-5  
3
5
0
1.0  
0
0x000C  
0x000E  
0x0010  
0x0012  
0x0014  
0x0016  
0x0018  
0x001A  
0x001C  
0x001E  
0x0020  
0x0022  
R / W AL  
R / W Pb1  
R / W dt  
R / W rt  
R / W db  
R / W tt  
R / W Hys1  
R / W Hys2  
R / W Hys3  
Limit value limit comparator  
Proportional band  
Derivative action time  
Integral action time  
Dead band (neutral zone)  
Actuator running time  
Switch-on threshold  
Switch-off threshold, bottom  
Switch-off threshold, top  
Reaction threshold  
Heating curve slope  
Parallel displacement  
room temperature  
-1999...9999  
0.1...9999  
0...9999  
0...9999  
0.0...100.0  
10...3000  
0...-199.9  
0...Hys3  
0.0...999.9  
0.0...999.9  
0.0...4.0  
R / W  
R / W  
R / W  
q
H
P
-90...90  
Configuration level  
Address  
Data  
type  
char [4]  
char [4]  
char [4]  
char [4]  
Access  
Parameter  
Value range  
Default  
value  
9030  
0010  
0110  
0x0024  
0x0026  
0x0028  
0x002A  
R / W C111  
R / W C112  
R / W C113  
R / W C000  
0000  
0x002C  
0x002E  
0x0030  
0x0032  
0x0034  
0x0036  
0x0038  
0x003A  
0x003C  
0x003E  
0x0040  
0x0042  
0x0044  
0x0046  
0x0048  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
float  
R / W SCL  
R / W SCH  
R / W SCL2  
R / W SCH2  
R / W SPL  
R / W SPH  
R / W OFF1  
R / W OFF2  
R / W OFF3  
R / W HYST  
R / W df1  
Normalization start value: Input 1  
Normalization end value: Input 1  
Normalization start value: Input 2  
Normalization end value: Input 2  
Start value setpoint limitation  
End value setpoint limitation  
Offset input 1  
-1999...9999  
-1999...9999  
-1999...9999  
-1999...9999  
-1999...9999  
-1999...9999  
-1999...9999  
-1999...9999  
-1999...9999  
0...9999  
0.0...100.0  
0...1440  
0...7200 *  
-1999...9999  
-1999...9999  
0
100  
0
100  
0
100  
0
0
Offset input 2  
Offset input 3  
0
1
Hysteresis of limit comparator  
Filter time constant input 1  
Filter time constant input 3  
Bus detection timer  
Start value actual value limit  
End value actual value limit  
1.0  
1278  
30  
-1999  
9999  
R / W dF3  
R / W dtt  
R / O oLLo  
R / O oLHi  
* Timer = 0 means switched off  
This parameter can only be changed via the management system  
9/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Device data  
Address  
Data  
type  
Access  
Parameter  
Value range  
Default  
value  
0x0300  
0x0300  
0x0306  
word [13]  
R / O Device data  
char SWVersion [11+1]  
char VDNNr [13+1]  
Software version  
VdN number  
Remote operation  
Address  
Data  
type  
Access  
Parameter  
Value range  
Default  
value  
0x0400  
float  
R / O TEMP  
Actual value E3 (unfiltered)  
0x0500  
0x0501  
word  
word  
R / W REM  
R / W ROFF  
Activation remote operation  
Controller OFF in REMOTE  
SETPOINT  
0...2 *  
0...1 **  
0
0
0x0502  
0x0504  
float  
float  
R / W RHYS1  
R / W RHYS2  
Switch-on threshold REMOTE  
Switch-off threshold bottom  
REMOTE  
0...-1999  
0...RHYS3  
HYS1  
HYS2  
0x0506  
0x0508  
float  
float  
R / W RHYS3  
R / W SPR  
Switch-off threshold top REMOTE  
Setpoint REMOTE  
0...9999  
SPL...SPH  
HYS3  
SP1  
0x050A  
0x050B  
0x050C  
0x050D  
0x050E  
0x050F  
word  
word  
word  
word  
word  
float  
R / W RK1  
R / W RK2  
R / W RK3  
R / W RK6  
R / W RSTEP  
R / W RY  
Burner control remote operation  
Relay K2 remote operation  
Relay K3 remote operation  
Relay LK remote operation  
Step control remote operation  
Positioning output remote  
operation  
0...1  
0...1  
0...1  
0
0
0
0
0
0
0...1  
-100...100  
0...100  
*
0 = local  
** 1 = controller OFF  
1 = remote setpoint  
2 = fully remote  
10/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Device state  
Address  
Data type  
Access  
Parameter  
0x0200  
word  
R / O  
Outputs and states  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
B8  
B9  
Hysteresis limitation  
B0  
B1  
B2  
B3  
Output 1 off  
Output 3 off  
Output 2 off  
Output 4 off  
(for remote operation)  
Management system off  
(for remote operation)  
Self-optimization active  
Second setpoint active  
Measured value range crossing input 1  
Measured value range crossing input 2  
Measured value range crossing input 3  
Reserved  
B10  
B11  
B12  
B13  
B14  
B15  
0x0201  
word  
R / O  
Binary signal and hardware identification  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
B15  
B14  
B13  
Reserved  
Interface present  
Analog output present  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
Operating mode 2-stage active  
Manual operation active  
Binary input 1 closed  
Binary input 2 closed  
Thermostat function active  
First controller output active  
Second controller output active  
Limit comparator active  
11/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Description of operating modes  
General  
Parameter «RemoteStatus» is used to switch between the operating modes «LOCAL»,  
«REMOTE SETPOINT» and «FULLY REMOTE». The change is always accomplished  
via the MOD bus.  
In the event the master fails or communication is lost, the RWF40... will switch to oper-  
ating mode «LOCAL». The time for detecting a failure is set via the interface.  
RAM parameter for re-  
mote operation  
Remote  
Default after  
«Power-up»  
parameter  
REM  
Operating mode «LOCAL», «REMOTE SETPOINT» or  
«FULLY REMOTE»  
= 0  
SPR  
Setpoint remote  
= SP1  
RHYS1  
RHYS2  
RHYS3  
ROFF  
Switch-on threshold remote  
= Hys1  
= Hys2  
= Hys3  
Lower switch-off threshold remote  
Upper switch-off treshold remote  
)
Controller ON (0) / OFF (1) in operating modes  
«REMOTE SETPOINT» and «FULLY REMOTE»  
Number of control cycles (opening / closing) (FULLY  
REMOTE)  
= 0 ¹  
)
RSTEP  
= 0 ²  
)
RK1  
RK2  
RK3  
RK6  
Release of burner (FULLY REMOTE)  
Controlling element opens (FULLY REMOTE)  
Controlling element closes (FULLY REMOTE)  
Value of «K6» in operating modes «SETPOINT  
REMOTE» and «FULLY REMOTE»  
Degree of modulation for the analog output (FULLY  
REMOTE) in %  
= 0 ³  
)
= 0 ³  
)
= 0 ³  
= 0  
RY  
= 0  
)
¹
²
³
Controller active  
)
)
No travel command (K2 + K3 = deenergized)  
When the operating mode changes (e.g. LOCAL J FULLY REMOTE), the relay  
information and the degree of modulation will be predefined, depending on the  
operating state of the plant.  
Dtt  
Bus detection timer (value will also be maintained after a power failure)  
The remote parameters are stored in RAM and will no longer be available after a power  
failure.  
After «Power-up», the default values will be used.  
12/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Operating mode  
«LOCAL»  
The previous functions of the RWF40... are maintained (apart from memory usage).  
The RWF40... can be parameterized and uploaded via the MOD bus, whereby the out-  
puts cannot be changed. After «Power-up», the RWF40... will normally assume oper-  
ating mode «LOCAL».  
Operating mode  
The RWF40... monitors cyclic bus communication via the «Dtt» parameter (bus detec-  
tion timer). Operating mode «REMOTE SETPOINT» is active as long as the bus calls  
within the predefined period of time. If the time limit is crossed, the RWF40... will switch  
to operating mode «LOCAL» and continues to operate using the parameters of local  
operation.  
«REMOTE SETPOINT»  
Like in operating mode «LOCAL», the control functions of the RWF40... are maintained.  
With regard to setpoint and switching thresholds, only «RSP» and «RHYS1...RHYS3»  
are active. The setpoints (SP1 and SP2), the external setpoint, the weather-  
compensated setpoint, the analog / binary setpoint shift and the associated changeover  
functions are not available.  
After the controller’s «Power-up», setpoint «SP1» and switching thresholds  
«Hys1...Hys3» will be copied to RAM as remote parameters in a one-time operation.  
These remote parameters can then only be changed via the management system.  
The control algorithm can be deactivated by the management system via parameter  
«ROFF=1». In that case, the RWF40... will switch the burner off and causes the con-  
trolling element to travel to the fully closed position. The controller terminates manual  
operation (analog safety shutdown).  
Self-optimization is not possible in this operating mode.  
The management system controls contact «RK6» (relay «K6»).  
Operating mode  
The RWF40... monitors cyclic bus communication via the «Dtt» parameter (bus detec-  
tion timer). Operating mode «FULLY REMOTE» is active as long as the bus calls within  
the predefined period of time. If the time limit is crossed, the RWF40... will switch to  
operating mode «LOCAL» and continues to operate using the parameters of local op-  
eration.  
«FULLY REMOTE»  
The management system switches the burner (RK1, relay «K1»), controls the actuator  
(RK2 and RK3, relays «K2 / K3»), or defines the degree of modulation in the case of an  
analog output, and controls contact «RK6» (relay «K6»).  
Using parameter «ROFF=1», control of the burner and controlling element can be  
switched off by the management system. In that case, the RWF40... deactivates the  
burner and causes the controlling element to travel to the fully closed position.  
Manual operation and self-optimization are not possible in this operating mode.  
2-stage burner:  
If, with a 2-stage burner, relay positions «RK2» and «RK3» are identical, the settings  
are «K2 = deenergized» and «K3 = energized» (closing).  
The analog output is set as follows, depending on the relay positions «RK2» and  
«RK3»:  
K2 = energized, K3 = deenergized J analog output = 10 V or 20 mA  
K2 = deenergized, K3 = energized J analog output = 0 V or 0 / 4 mA  
Setting the «RY» by the management system has no impact.  
13/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  
Mudulating burner  
Modulating controller:  
The management system predefines the value (degree of modulation) for the analog  
output via «RY».  
Setting the «RK2» and «RK3» by the management system has no impact.  
Both relays «K2» and «K3», are deenergized.  
Floating step controller:  
The management system controls the actuator («RK2» and «RK3», relays «K2» /  
«K3»).  
Setting the «RY» by the management system has no impact. In that case, the analog  
output delivers 0 V or 0 / 4 mA.  
The RWF40... always checks to ensure that «RK2» and «RK3» (opening / closing) are  
not activated simultaneously. In such a case, the response is «K2 = K3 = deener-  
gized».  
If both relay contacts change their position during the controller’s sequence time, the  
output is «K2 = K3 = deenergized». This time contact interval («K2 = K3 = off» for one  
scanning time) is also permitted in 2-stage operation.  
Control strategy for  
floating output with  
modulating burner  
operation  
The remote relay commands «RK2» and «RK3» (relays «K2» / «K3») control the  
opening and closing travel of the controlling element. Using parameter «RSTEP», the  
management system predefines the required number of control cycles.  
Output «K2» (opening) is controlled by a travel command and a positive number.  
Output «K3» (closing) is controlled by a travel command and a negative number.  
The number gives the number of RWF40... scanning cycles (210 ms) with which the  
output is controlled.  
The travel command with number 0 deenergizes immediately «K2» and «K3».  
If a new travel command is given before the control time has elapsed, the RWF40...  
ascertains the direction of rotation requested by the command. If the direction of rota-  
tion does not change, the control time will immediately be replaced by the new value. If  
the direction of rotation must be reversed, the controlled output will be dactivated and,  
for the next scanning cycle, the appropriate control time is used (time contact interval).  
If, simultaneously with the control strategy for the floating output, outputs «K2» and  
«K3» (via «RK2» and «RK3») are directly set by the management system, the relay  
information from the control strategy and output information «K2» and «K3» have a  
logic «OR» connection. «RK2» and «RK3» (opening / closing) must never be energized  
simultaneously. In such a case, the response is «K2 = K3 = denergized».  
Supervision of actual  
value by setpoint-  
dependent switching  
thresholds  
In operating mode «FULLY REMOTE», the management system ensures burner con-  
trol. The RWF40... monitors the actual value to make certain the switching hystereses  
will be observed.  
If the actual value crosses the upper switch-off threshold, the management system will  
be locked (status flag, «Management system locked» can be read via the interface).  
The management system is released again when the actual value returns to a level  
below the switch-on threshold.  
If supervision of the actual value is not desired, the switching hystereses in the  
RWF40... must be set to the respective maximum value.  
In operating mode «REMOTE SETPOINT», the control algorithm ensures this kind of  
supervision.  
2002 Siemens Building Technologies  
Subject to change!  
14/14  
Siemens Building Technologies  
HVAC Products  
CC1A7865.1en  
31.10.2002  

Toshiba MKxx61GSY User Manual
Sylvania SCR1336 User Manual
Seagate ATA Interface Disc Drives ST94011A User Manual
Samsung SCH U370 User Manual
Samsung GT S5333 User Manual
Samsung Cell Phone GH68_37222A User Manual
Samsung SGH S105 User Manual
RCA CD Player RP2419 User Manual
Philips CT5888 User Manual
Pantech 4160292 User Manual